
OOP Interfaces in Java 8 Page 1

New Rules for Interfaces

Java 8 changes the rules for interfaces. It adds the following:

1. interfaces can contain default implementations (code) for methods!

2. interfaces can contain static methods with code.

3. functional interfaces using the @Functional annotation

Default Methods

Before Java 8 all interface methods were abstract (no method body). In Java 8, you can supply a
"default" implementation for methods in an interface.

Suppose we have an interface for Money named Valuable. The Valuable interface has two methods:
getValue() and getCurrency(). In Java 7 we would write:

public interface Valuable {
 double getValue();
 String getCurrency();
}

In Java 8, we could specify default code for getCurrency that simply returns "Baht":

public interface Valuable {
 double getValue();
 default String getCurrency() { return "Baht"; }
}

To make the default getCurrency more general, you can add code to get the currency for the user's current
Locale setting:

import java.util.*; // for Currency and Locale
public interface Valuable {
 double getValue(); // abstract method

 default String getCurrency() {
 Locale locale = Locale.getDefault();
 return Currency.getInstance(locale).getDisplayName();
 }
}
Any code that "implements Valuable" can either override the getCurrency() method, or do

nothing and use the default implementation.

Static Methods

Java 8 interfaces can define static methods, including code. Any class that implements the interface will get
the static method, as if the static method was defined in the class itself.

public interface VAT {
 static double VAT_RATE = 0.07; // automatically "public final"
 static double getTax(Valuable v) {
 return v.getValue() * VAT_RATE;
 }
}

OOP Interfaces in Java 8 Page 2

Functional Interfaces

An interface with only one abstract method is called a "functional Interface", since they can be used like
functions. Functional interfaces can be implemented as lambda expressions and method references. A
lambda expression defines just one method, so the implicit type of a lambda (the target type) must be an
interface with only one abstract method.

Similarly, a function reference refers to just one function. So, you can use a function reference in places that
expect an interface with just one abstract method.

Some older interfaces (before Java 8) that qualify as functional interfaces are:

Comparable<T> int compareTo(T other)

Comparator<T> int compare(T a, T b)

Runnable void run()

Callable<T> T call()

Java 8 has many new functional interfaces in the package java.util.function. Most of them are special
cases of one of these:

Interface Abstract Method Purpose

Consumer<T> void accept(T arg) A function of one variable that doesn't return
anything. It consumes the argument.

Supplier<T> T get() Produces or "supplies" an object of type T, one
object per call.

Predicate<T> boolean test(T arg) Performs a test on the argument. Used to build
filters.

Function<T, R> R apply(T arg) A function of one parameter that produces a
result. Can be used to map one kind of object to
another.

BiFunction<T,U,R> R apply(T a, U b) Function of two parameters.

UnaryOperator<T> T apply(T arg) A unary operator. This is the same as
Function<T,T>

BinaryOperator<T> T apply(T a, T b) A binary operator. Same as BiFunction<T,T,T>

Many of these interfaces also have default methods. The default methods are used to "build" more complex
functions.

For example, suppose we want a Predicate to test if a Double is greater than zero. Using a Lambda:

 Predicate<Double> isPositive = (d) -> (d > 0.0);

You can test this predicate by invoking test() with some doubles:

 isPositive.test(2.5) // returns true

 isPositive.test(0.0) // returns false

We can create a new Predicate that tests for (d <= 0.0) by calling the negate() default method of
Predicate:

 Predicate<Double> notPositive = isPositive.negate();

And test it:

OOP Interfaces in Java 8 Page 3

 notPositive.test(0.0) // returns true

The Consumer, Supplier, Predicate, and Function interfaces all have type parameters. To make it possible to
write Lambda expressions using primitive data types, Java 8 also adds many functional interfaces for
primitive types like int and double (some people call this interface pollution). For example, for Consumer
there are the following extra interfaces:

IntConsumer void accept(int x) Consumes an int

DoubleConsumer void accept(double x) Consumes a double

LongConsumer void accept(long x) Consumes a long

Similarly for Supplier and Predicate. For Function, there are many specialized variations such as
IntFunction, IntToDoubleFunction, IntToLongFunction, etc.

The Functional Interfaces serve two purposes:

1) provide convenient interface types for writing commonly used lambdas

2) provide interfaces used in the new streams API.

Example using Functional Interfaces

Suppose we have a Student class. A Student has an id, name, and birthday.

We want to print all the students born this month (so we can send them a birthday greeting.

A simple code for this is:

public void filterAndPrint(List<Student> students, int month) {
for(Student s : students) {

if (s.getBirthday().getMonthValue() == month)
 System.out.println(s);

}
}
In this code there is a test (a Predicate) and a Consumer. To make our code more general, let's rewrite the
method so it accepts a Predicate (the test) and a Consumer (the action to perform).

public void filterAndDo(List<Student> students,
 Predicate<Student> tester,
 Consumer<Student> consumer) {
 for(Student s: students) if (tester.test(s)) consumer.accept(s);
}
And use this new method to print students with birthday in May:

Month month = Month.May; // an enum of the Months, used by LocalDate
// Test: test the birthday month
Predicate<Student> hasBirthMonth =
 (s) -> s.getBirthday().getMonthValue() == month;
// Consumer: print the student name and birthday
Consumer<Student> printBirthday =
 (s) -> System.out.println(s+" has birthday on "+s.getBirthday());

filterAndDo(students, hasBirthMonth, printBirthday);

Student

name: String
id: String
birthday: LocalDate

OOP Interfaces in Java 8 Page 4

We can use the new Streaming interface of collections instead of the for loop. In this case, we really don't
need the method at all. We can just write:

students.stream().filter(hasBirthMonth).forEach(printBirthday);

Defining a Functional Interface

To define your own functional interface, prefix your interface declaration with @FunctionalInterface.
However, any interface with exactly one abstract method can be used as a target type of a lambda expression
even if you don't use this annotation.

References

 In the Java API docs, the package desciption for java.util.function has a long description of the
functional interfaces. The Java tutorial on Lambda expressions uses several function interfaces.

 "Enhancements in Java SE 8" online at
https://docs.oracle.com/javase/8/docs/technotes/guides/language/enhancements.html

